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Abstract

We present a high-order compact method for large eddy simulation (LES) of compressible turbulent flows. Numerical

solution of Navier–Stokes equations with high-order compact methods has been limited by numerical instabilities caused

by ill-resolved features of the flow. This problem is alleviated by a staggered arrangement of conserved variables. Simu-

lations of decaying isotropic turbulence at highReynolds numbers demonstrate the superiority of the presentmethod over

the collocatedmethod. Furthermore, the presentmethod is applicable to the conservative formof the governing equations,

thereby allowing total energy conservation, a property usually sacrificed in LES with the collocated method. Boundary

schemes that extend the present methodology to non-periodic domains are also presented.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, large eddy simulation (LES) has been applied to a wide variety of turbulent flows,

ranging from problems of scientific interest to those with engineering applications. This development has
been possible due to a rapid increase in computational power and a better understanding of the numerical

aspects of LES. However, a vast majority of LES research has been devoted to incompressible flows;

compressible flow applications have only recently gained attention [1–3].

In LES, unlike other methods, significant energy is present at the high end of the wavenumber spectrum

supported by the grid. A numerical scheme for LES should therefore perform well at high wavenumbers.

Spectral methods are a natural choice as they are uniformly accurate at all wavenumbers, but have limited

application as they impose significant restrictions on geometry and boundary conditions. Furthermore, as a

consequence of good resolution at high wavenumbers, aliasing errors are high, and unless explicitly re-
moved, lead to significant degradation of the solution. For successful LES, aliasing errors must be small,

and the numerical method should not be overly sensitive to them. Finite difference schemes overcome these

restrictions, at the cost of accuracy at high wavenumbers. Complex geometries and boundary conditions
*Corresponding author.

E-mail addresses: snag@stanford.edu (S. Nagarajan), lele@stanford.edu (S.K. Lele), ferziger@stanford.edu (J.H. Ferziger).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00322-X

mail to: snag@stanford.edu


S. Nagarajan et al. / Journal of Computational Physics 191 (2003) 392–419 393
are better handled by finite difference or finite element schemes, whose aliasing errors are lower due to

damping at high wavenumbers. One such scheme, the second-order finite difference method on a staggered

mesh, which has been applied to LES of incompressible flows with remarkable success [4,5], owes its ro-

bustness to its ability to conserve kinetic energy, as well as mass and momentum. This property has been

extended to higher-order schemes as well [6].

Truncation errors of second-order schemes are large andmay exceed themodeled terms in LES [7], making

it difficult to differentiate between sources of errors.High-order compact schemes [8] offer a compromise. They

perform better than conventional finite difference schemes at high wavenumbers, without the restrictions
spectralmethods impose on geometry andboundary conditions. These schemes have been successfully applied

to direct numerical simulation (DNS) of compressible flows [9–11] and computational aeroacoustics [12], and

with limited success to LES [13–15]. The main drawback of these schemes is their sensitivity to aliasing errors

which are significantly larger than for explicit finite difference schemes. It has been observed that aliasing is

reduced by amodified form of the non-linear advection terms [16–18] and by using a non-conservative form of

the energy equation [13,18]. These modifications render this method unsuitable for flows involving shocks

because momentum and total energy are not conserved. To apply high-order compact schemes to com-

pressible flows, their robustness needs to be improved without sacrificing conservation. Based on the obser-
vations made so far, we can identify four properties required of a numerical method for LES of compressible

turbulent flows: (i) high-order accuracy, (ii) good resolution at high wavenumbers, (iii) low sensitivity to

aliasing errors, and (iv) conservation of mass, momentum, and total energy.

These conflicting requirements may be reconciled, to some extent, by a staggered arrangement of

variables with a high-order compact scheme. The compact scheme provides better resolution at high

wavenumbers while staggering of variables, as is demonstrated in this paper, leads to improved robustness.

Furthermore, in the staggered case, the governing equations may be cast in the fully conservative form,

guaranteeing total energy conservation. Staggered grids have been proposed earlier for solution of the
compressible Navier–Stokes equations. Recent research includes that of Kopriva [19] who uses a spectral

method along with staggering of flux location with respect to the conserved variables. This allows con-

servation while using a multi-domain method. Djambazov et al. [20] used a higher-order staggered (in space

and time) method to solve the linearized Euler equations for computational aeroacoustics. In their work,

Djambazov et al. use staggered location for the variables themselves, but only two of the terms in the

equations are treated in a staggered manner. The method presented in this paper involves complete stag-

gering in space, i.e., the conserved variables are located at different points as are the fluxes of each con-

served variable. This arrangement leads to a robust method that can be used for LES at high Reynolds
numbers.

This paper consists of two parts. In the first part (Sections 2–6), the basic high-order staggered method is

analyzed and compared to the collocated method. The governing equations for LES and the sub-grid scale

(SGS) models are described in Section 2. The compact finite difference and interpolation schemes are

presented in Section 3, and are Fourier analyzed in Section 4. Variable arrangements and discretization of

the terms in the governing equations are discussed in Section 5. In Section 6, the superiority of the staggered

arrangement is demonstrated through LES of decaying isotropic turbulence. The second part of the paper

consists of Sections 7 and 8 wherein boundary schemes for staggered variable arrangement are described
and applied to test problems.
2. Governing equations

The governing equations are continuity, momentum, and energy equations in three space dimensions. In

Cartesian coordinates ðx1; x2; x3Þ these equations may be written in the following non-dimensional form

(dimensional quantities carry a superscript �*�)
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where q, ui, p, E, rij, and qi are the density, velocity vector, pressure, total energy, viscous stress tensor, and

heat flux vector, respectively
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where Re ¼ q�
0c

�
0L
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�
0 is a Reynolds number based on the reference density q�

0, velocity c�0 (the reference

sound speed), length scale L�
0, and coefficient of viscosity l�

0 at the reference conditions. Pr ¼ l�
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Prandtl number. The above set is closed by the equation of state
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The set (1) of equations may be written in vector form as
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where U is the vector of conserved variables and Fi is the flux vector in the xi-direction.
To obtain the LES equations, a filter is needed. The kernel of a spatial filter over a domain X is denoted

by GðxÞ and a filtered quantity (denoted by an overbar) is defined as

�ff ðxÞ ¼
Z
X
Gðx� x0Þf ðx0Þdx0: ð7Þ

The compressible LES equations are simpler if Favre (density-weighted) filtering (denoted by a ���)
defined as

eff ¼ qf
q

ð8Þ
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is utilized. The equations for LES are derived using the filter (7) on the governing equations (1) (see [13] for

details). Assuming that filtering commutes with differentiation, we get
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where rij and qi are the filtered stress tensor and heat flux, respectively. These terms, along with the sub-grid

terms ssgsij and qsgsj are described in Appendix A.
3. Numerical schemes

In this section, we present high-order compact schemes for collocated and staggered grids used in this

paper (see [8] for a more general and complete discussion of such schemes). In each case, a one-parameter

family of fourth-order schemes is presented. The schemes we use are the single sixth-order scheme that each

family yields for a particular value of the free parameter.

To define the finite difference schemes and to Fourier analyze them, we consider 1-D collocated and
staggered grids. Considering a uniformly spaced grid, as shown in Fig. 1, with nodes at xj ¼ ðj� 1ÞDx for

06 j6N (where Dx is the grid spacing) a collocated scheme evaluates the derivative of f at these nodes

using the function values fj ¼ f ðxjÞ whereas a staggered scheme uses function values located half a cell

width away, i.e., at nodes with indices f1=2; . . . ; j� 1=2; jþ 1=2; . . . ;N � 1=2g.

3.1. Approximation of first derivative

A high-order compact finite difference approximation for the first derivative f 0 ¼ df =dx at the nodes

j ¼ 0; . . . ;N is given by

âaf 0
j�1 þ f 0

j þ âaf 0
jþ1 ¼ b

fjþ2 � fj�2

4Dx
þ a

fjþ1 � fj�1

2Dx
: ð10Þ

Matching coefficients of the Taylor series expansion gives relationships among the parameters âa, a and b.
Doing so to fourth order yields a one-parameter family of fourth-order schemes with

a ¼ 2
3
ð2þ âaÞ; ð11Þ
b ¼ 1
3
ð � 1þ 4âaÞ: ð12Þ

The leading order truncation error vanishes for âa ¼ 1=3 resulting in a sixth-order compact scheme which

we call the basic collocated difference scheme.
Fig. 1. 1-D grid for collocated and staggered schemes.
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If the function values are available half a grid spacing from the nodes, i.e., fjþ1=2 ¼ f ðxjþ1=2Þ are given, a
high-order compact scheme for evaluating the derivative f 0

j at the node xj is

âaf 0
j�1 þ f 0

j þ âaf 0
jþ1 ¼ b

fjþ3=2 � fj�3=2

3Dx
þ a

fjþ1=2 � fj�1=2

Dx
: ð13Þ

Once again, this is a family of fourth-order schemes if

a ¼ 3
8
ð3� 2âaÞ; ð14Þ
b ¼ 1
8
ð�1þ 22âaÞ: ð15Þ

The basic staggered difference scheme of sixth order is obtained for âa ¼ 9=62.

3.2. Approximation of second derivative

Evaluation of viscous terms requires second derivatives on collocated meshes but not in the case of the
staggered arrangement (see Section 5). A compact scheme for the second derivative f 00

j is

âaf 00
j�1 þ f 00

j þ âaf 00
jþ1 ¼ b

fjþ2 � 2fj þ fj�2

4Dx2
þ a

fjþ1 � 2fj þ fj�1

2Dx2
: ð16Þ

For fourth-order accuracy, the following relations need to be satisfied:

a ¼ 4
3
ð1� âaÞ; ð17Þ
b ¼ 1
3
ð � 1þ 10âaÞ: ð18Þ

A single sixth-order scheme is obtained when âa ¼ 2=11.

3.3. Interpolation scheme

The staggered method involves midpoint interpolation, which is carried out by an approximation of the

form

âaf I
j�1 þ f I

j þ âaf I
jþ1 ¼

b
2

fjþ3=2

�
þ fj�3=2

�
þ a
2

fjþ1=2

�
þ fj�1=2

�
; ð19Þ

where f Is are the interpolated values. For fourth-order accuracy, the coefficients are related by

a ¼ 1
8
ð9þ 10âaÞ; ð20Þ
b ¼ 1
8
ð6âa� 1Þ; ð21Þ

with âa ¼ 3=10 yielding a sixth-order scheme.

Of the four properties outlined in Section 1, schemes described so far satisfy the high-order accuracy

requirement. In the following section, the second property, viz. good resolution characteristics, is dem-

onstrated by Fourier analysis.
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4. Fourier analysis of errors

Fourier analysis allows us to quantify errors at resolved wavenumbers and demonstrates the suitability

of a scheme for LES wherein it is necessary to represent all wavenumbers accurately. For Fourier analysis,

we consider a function f ðxÞ that is periodic over the domain ½0; L�. For an equally spaced grid with N þ 1

nodes, Dx ¼ L=N , and the Fourier representation of f is

f ðxÞ ¼
XN=2�1

k¼�N=2

f̂fk exp
2pikx
L

� �
; ð22Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. Introducing the scaled wavenumber x ¼ 2pkDx=L ¼ 2pk=N and the scaled coordinate

s ¼ x=Dx simplifies the Fourier modes to eixs, where x 2 ½�p; p�. Differentiating the scaled representation

f ðsÞ with respect to s yields

f 0ðsÞ ¼
XN=2�1

k¼�N=2

ixf̂fk expðixsÞ: ð23Þ

Therefore f̂f 0 ¼ ixf̂f . Differencing errors may be assessed by comparing the Fourier coefficients of the first

derivative obtained using the finite difference scheme ðf̂f 0
kÞfd ¼ ix0f̂fk to those of the exact derivative

f̂f 0
k ¼ ixf̂fk, i.e., comparing x0 and x. Exact differentiation therefore corresponds to x0 ¼ x, a relation

spectral methods reproduce faithfully (except at x ¼ p). The functional dependence of x0 on x for stag-

gered differentiation is obtained by setting f ðsÞ ¼ eixs in (13) as

x0 xð Þ ¼
2a sin xð Þ þ 2

3
b sin 3x=2ð Þ

1þ 2âa cos xð Þ : ð24Þ

Similar expressions may be obtained for the other derivative schemes. In Fig. 2, the modified wavenumber

x0 is depicted as a function of x for various schemes. It is apparent that staggered schemes approximate the

exact wavenumber better than collocated schemes. In fact, even for second-order central differences, rep-

resentation of high wavenumbers by the staggered scheme is markedly superior to that of the collocated

scheme. Furthermore, representation of high wavenumbers improves significantly with order of accuracy. It

is clear that staggered differentiation, along with high-order accuracy, provides better resolution at high

wavenumbers.
A Fourier analysis of second derivative schemes that are needed to evaluate the viscous terms sheds light

on the accuracy of these terms at high wavenumbers. These terms are of the form

o
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ox
ou
ox

þ l
o2u
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: ð25Þ

Either side of the above equality may be used to evaluate the viscous terms. The LHS of (25), which is

in the conservative form, involves two applications of the first derivative scheme while the RHS, a non-

conservative form, involves a second derivative evaluation. The modified wavenumber (assuming l is

uniform in space) obtained from Fourier analysis of these methods are shown in Fig. 3. On collocated
meshes, the conservative form provides very poor representation at high wavenumbers whereas the non-

conservative form does much better, and is therefore preferred. On the other hand, on a staggered

mesh, the conservative form (which evaluates the viscous term at the same location as the function f )
may be used as it causes little degradation of high-wavenumber components. Furthermore, better

resolution provided by the high-order compact method compared to second-order central difference is

also evident.



Fig. 2. Modified wavenumber spectrum of various first derivative operators.

Fig. 3. Modified wavenumber spectrum of various second derivative operators. Curves for the collocated scheme (dotted line) and two

first derivative evaluations with the staggered scheme (dashed line) lie almost on each other.
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Fourier coefficients of the interpolated function are compared to those of the original function to assess

the resolving power of the interpolation scheme. Ideally, the coefficients should remain unchanged after

interpolation. The accuracy of an interpolation scheme and its resolution properties are characterized by a
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transfer function that is the ratio of the Fourier coefficient (at each wavenumber) of the interpolated

function to that of the original function. This ratio is obtained by setting f ðsÞ ¼ eixs in (19),

T xð Þ ¼ a cos x=2ð Þ þ b cos 3x=2ð Þ
1þ 2âa cos xð Þ : ð26Þ
Fig. 4. Transfer function of interpolation operators.

Fig. 5. Modified wavenumber spectrum of interpolation+ staggered derivative operator compared to collocated and staggered

differences.
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Transfer functions for the second-order explicit and sixth-order compact interpolation are shown in Fig. 4.

The compact scheme resolves high-wavenumbers with greater accuracy.

In the staggered arrangement (to be discussed in the following section), derivatives of advective fluxes are

obtained by application of the staggered compact scheme to an interpolated function. This leads to

damping of high wavenumbers. The modified wavenumber of this composite operation is the product of the

modified wavenumbers of staggered differencing and the transfer function of interpolation. This is depicted

in Fig. 5 (triangles), and is clearly very close to that of the compact scheme on a collocated mesh. Thus,

staggering does not affect the resolution characteristics of the non-linear terms in the governing equations.
We conclude this section by observing that, in all cases, compact schemes provide better resolution than

central difference schemes at high-wavenumber. Furthermore, staggering either improves upon or causes

very little change in resolution characteristics of collocated grids. Therefore, high-order compact schemes

satisfy two of the requirements stated at the outset, viz. (i) high order of accuracy and (ii) better resolution

at high wavenumbers. In the following section, we discuss the arrangement of variables for the Navier–

Stokes equations and the choice of schemes for each arrangement. The third property, robustness brought

about by reduced sensitivity to aliasing errors, is also discussed.
5. Variable arrangement and discretization of the governing equations

In this section, two kinds of variable arrangements are discussed and the method used to update the

governing equations is outlined for each case.

5.1. Collocated arrangement

In the collocated arrangement (shown in Fig. 6(a)), all dependent variables are located at the same point.

This arrangement is widely used for compressible flow calculations and LES of turbulent flows have been

conducted on such meshes with sixth-order compact schemes [13–15]. However, these researchers found

that certain modifications to the governing equations improve robustness. First, the non-linear advection
terms are recast in a modified form (see [16] for further details):

o
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qeuuieuuj
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2
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qeuuieuuj

� �
þ 1

2
qeuui

oeuuj

oxj
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2
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o

oxj
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This leads to reduction of aliasing errors. It has been observed that employing the equation for internal

energy instead of the total energy equation also improves the robustness of LES calculations. In place of the

energy equation in (1), the following is used
Fig. 6. Arrangement of variables in two dimensions: (a) collocated and (b) staggered.
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Since internal energy is not a conserved quantity, energy conservation is not guaranteed when (28)

is used, rendering the collocated method unsuitable for compressible flows that involve shocks. Note

also that the convective terms in the energy equation may also be recast in the modified form to reduce

aliasing errors.

The discretization scheme used for the convective and pressure terms in the governing equations is the
sixth-order collocated first derivative scheme. For the viscous terms in the momentum equation, two ap-

plications of the first derivative operator reduces in magnitude the high wavenumber components (as shown

in Fig. 3) of the viscous terms. This translates to insufficient resolution of viscous terms at high wave-

numbers and is undesirable. These terms are therefore recast in the non-conservative form using the chain

rule and the second derivative operation with the sixth-order collocated scheme is used.
5.2. Staggered arrangement

The staggered arrangement of variables is shown in Fig. 6(b). Such an arrangement was first proposed

in [21] to overcome the problem of pressure–velocity decoupling in incompressible flows. In this ar-

rangement, momenta are located half a cell width from thermodynamic variables. Fig. 7 shows the lo-

cation of the conserved variables and fluxes for update of the continuity and x1-momentum equations.
For the continuity equation, the fluxes qu1 and qu2 are located naturally at the cell faces whereas, for the

x1-momentum equation, all fluxes except the advective ones are located at the cell faces. The advection

terms qu1u1 and qu1u2 need to be evaluated at the cell faces by interpolation. Once the fluxes are available

at the locations shown in Fig. 7, the staggered derivative scheme is used to evaluate the flux derivatives at

the variable location. It should be noted that there are many ways in which some of the terms can be

evaluated in the staggered method. The method chosen was arrived at by trying out the various options

available and then choosing the most robust one. For example, advection terms (e.g., qu1u2 in the

x-momentum equation) need to be interpolated. This was done by interpolating the mass flux (qu2) and
the velocity (u2) to the node shown by an open circle in Fig. 7, multiplying the two, and differentiating

using the staggered scheme. The viscous stress tensor, on the other hand, is naturally located (as shown in

Fig. 7) and requires no interpolation. A similar methodology is followed for advective and heat-flux terms

in the energy equation. The terms oðuirijÞ=oxj use three interpolations (when i 6¼ j) to shift ui and rij to

the uj-node. The interpolated values are then multiplied and differentiated to get their contribution to the

energy equation.

In this section, the problems associated with the use of high-order compact schemes with the collocated

arrangement have been described. The staggered arrangement has also been discussed, but the advantages
of staggering are not yet evident. The superiority of the staggered arrangement is revealed through LES of

isotropic turbulence, presented in the following section.
Fig. 7. Variable and flux location on a staggered grid: (a) continuity equation and (b) x1-momentum equation.
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6. Numerical experiments

In this section, the staggered method is validated against experiments and compared to the following

collocated methods:

• Collocated method I uses the fully conservative form of the total energy equation along with the modified

form of the convective and non-conservative form of the viscous and heat flux terms.

• Collocated method II uses the internal energy equation and the modified form of the convective terms in

both the momentum and energy equations along with the non-conservative form of the viscous and heat
flux terms.

A third-order Runge–Kutta scheme is used for time marching, with the Courant number limited to small

values (<0.1) to minimize errors associated with time integration.

Temporal decay of homogeneous isotropic turbulence is chosen as the test problem as it avoids com-

plications arising from boundary conditions while providing an accurate assessment of the suitability of a

scheme for LES. The characteristic scales of decaying isotropic turbulence are the rms velocity fluctuation

u�rms and the Taylor microscale k� which yield the time scale s�t ¼ k�=u�rms. The characteristic non-dimen-

sional parameters are the microscale Reynolds number and turbulent Mach number defined by

Rek ¼
u�rmsk

�

m�
; ð29Þ
Mt ¼
q�

c�0
¼

ffiffiffi
3

p
u�rms

c�0
; ð30Þ

where m� is the kinematic viscosity, c�0 is the speed of sound of the mean state, and q�
2 ¼ 3 u�

2

rms.

6.1. Validation of staggered method – comparison with experiments

The staggered method and its implementation are validated against the benchmark experiments of grid-
generated turbulence by Comte-Bellot and Corrsin [22]. The simulation is carried out on a 323 grid with an

initial velocity field that is solenoidal, has an energy spectrum measured at one of the stations in the ex-

periment, and random phase relationship between the modes. The initial Taylor microscale Reynolds

number, associated with the measurement location in the experiment, is 71.6. The temporal development of

turbulence in the simulation is then compared to the spatial development observed in [22] after relating the

two through Taylor�s hypothesis. It should be noted that the experiments were conducted in the incom-

pressible regime whereas the simulations performed here are compressible. For an initial turbulent Mach

number of Mt ¼ 0:3, the differences are not expected to be large. In Figs. 8 and 9 the results from the
numerical simulation are compared to those from the experiment. Fig. 8 shows the decay of turbulent

kinetic energy as a function of time and Fig. 9 depicts the energy spectrum at a later time (downstream

location in the experiment). The good agreement between computed and experimental results provides a

validation of the staggered method.

6.2. Test of robustness – high Re simulations

A method for LES is considered robust if it is able to handle high Re simulations with relatively few grid

points, i.e., it supports under-resolved simulations. Two studies that demonstrate robustness of the stag-

gered method are presented: the first compares the performance of the staggered method and collocated

method I that employs the total energy equation, while the second compares the staggered method and

collocated method II. All simulations have been carried out on a 323 grid, with an initial energy spectrum



Fig. 8. Validation of staggered method – comparison of simulated decay of turbulent kinetic energy with the experiment of Comte-

Bellot and Corrsin [22].

Fig. 9. Validation of staggered method – comparison of calculated energy spectrum with the experiment of Comte-Bellot and Corrsin

[22].

S. Nagarajan et al. / Journal of Computational Physics 191 (2003) 392–419 403



404 S. Nagarajan et al. / Journal of Computational Physics 191 (2003) 392–419
EðkÞ ¼ 16

ffiffiffi
2

p

r
u2rms

k0

k
k0

� �4

exp

"
� 2

k
k0

� �2
#
: ð31Þ

Initial velocity fields are solenoidal and initial thermodynamic fields are uniform in space. This corresponds

to the initial condition IC4 in [23] which they find to be the most severe in terms of dilatation developed in

the transient.

For the first comparison, simulations are carried out at a turbulent Mach number of Mt ¼ 0:3 and three

Reynolds numbers, Rek ¼ 100, 500, and 1000. The most energetic scales in the initial spectrum occur at
k0 ¼ 4. The staggered method and collocated method I are run at these conditions and the results are

compared. Fig. 10 shows the decay of turbulent kinetic energy predicted by the two methods at various

Reynolds numbers. At Re ¼ 100 the decay predicted by the staggered method and collocated method I are

in good agreement. At higher Reynolds numbers (500 and 1000), the agreement between the two methods is

still very good, but the collocated method fails after some time. Failure of the collocated method occurs due

to growth of rms fluctuations of thermodynamic variables, as illustrated in Fig. 11, which shows the

evolution of rms density fluctuations predicted by collocated method I in the three simulations. At high

Reynolds numbers, density fluctuations increase in an unbounded manner, causing instability. On the other
hand, the staggered grid solution behaves well even at high Reynolds numbers, as shown by the rms density

fluctuation history in Fig. 12. It should be noted that for a given initial field, as Re increases, viscous terms

become negligible and sub-grid terms are responsible for energy dissipation. In the limit, the simulations

should become independent of Re as the sub-grid model does not depend on Re (see Appendix A). This

trend is captured by the staggered method, as evident from Figs. 10 and 12 wherein the difference between

Rek ¼ 500 and 1000 curves is much smaller than that between Rek ¼ 100 and 500 curves. It should also be

noted that as Re increases, behavior of the solution is dictated completely by the interaction of the nu-

merical method and the sub-grid model. If the numerical method remains stable in the presence of large
errors, the sub-grid model will eventually drain energy from the high wavenumber before instabilities occur.
Fig. 10. Comparison of staggered method with method I – decay of turbulent kinetic energy at different Reynolds numbers.



Fig. 11. Method I – evolution of rms density fluctuations.

Fig. 12. Staggered method – evolution of rms density fluctuations at the same conditions as Fig. 11.
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The staggered method shows this behavior whereas the collocated method does not. Furthermore, as

Reynolds number increases, the shift of the kinetic energy decay curve follows the trends observed in the

direct numerical simulations of Samtaney et al. [23]. In the absence of a sub-grid model, i.e., an under-

resolved direct numerical simulation (DNS), the present scheme causes a transfer of energy from the in-

ternal to the kinetic mode. As a result, LES without a sub-grid model is not stable at Reynolds numbers

larger than Rek � 300 on a 323 grid; failure occurs at t=s � 3 for Rek � 400.



Fig. 13. Comparison of staggered method with method II – decay of turbulent kinetic energy at different Reynolds numbers.
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The staggered method is now compared to collocated method II that uses the internal energy equation.

As mentioned earlier, use of the internal energy equation improves robustness of the collocated method. As

a result, higher Reynolds numbers can be attained. To bring out the differences between the two schemes,

this comparison is carried out at conditions more stringent than the earlier case. The turbulent Mach

number is raised (to Mt ¼ 0:4) as is the location of the peak in the initial spectrum (to k0 ¼ 7). Once again

the Reynolds numbers for the three simulations are taken to be Rek ¼ 100, 500, and 1000. Under these

conditions, collocated method I fails even at Rek ¼ 100. The decay of turbulent kinetic energy is shown in
Fig. 13. Once again, in terms of kinetic energy, the collocated method compares well with the staggered

method at all Reynolds numbers. However, the collocated method simulations at higher Reynolds numbers

fail due to and unbounded increase of thermodynamic fluctuations. This is clear from Fig. 14 which shows

as sudden increase in the density fluctuations for high Reynolds numbers. On the other hand, the staggered

method behaves well at high Reynolds numbers, as is clear from Fig. 15.

Figs. 13 and 14 show that turbulent kinetic energy is well behaved while fluctuations in thermodynamic

quantities are not. Thus, we may conclude that instabilities arise from the energy equation. This is con-

firmed by the oscillatory behavior of turbulent Prandtl number in the collocated case as shown in Fig. 16.
There are oscillations in Prandtl number in the staggered case as well, but these are confined to the initial

transient and do not lead to catastrophic failure as in the collocated case. One is led to conclude that these

instabilities are due to interaction of the scheme with the sub-grid model. Furthermore, collocated method

II uses the internal energy equation. As a result, total energy is not expected to be conserved by this

method, as evident from Fig. 17 depicting the time evolution of total energy in the domain. The staggered

scheme which uses the total energy equation conserves it, whereas, at all Reynolds numbers, collocated

method II suffers from a decrease in total energy by as much as 3%. This is undesirable when dealing with

shocks and heating/cooling. In these simulations, Mach number reaches locally supersonic values and eddy-
shocklets are present.

The simulations just described use initial conditions (Mt ¼ 0:4, k0 ¼ 7 and Rek ¼ 100, 500, and 1000) that

are very similar to one case in [23] (case D8 with Mt ¼ 0:5, k0 ¼ 8, and Rek ¼ 72 with no variations in the



Fig. 15. Staggered method – evolution of rms density fluctuations at the same conditions as Fig. 14.

Fig. 14. Method II – evolution of rms density fluctuations at three Reynolds numbers.
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initial thermodynamic field). A comparison of rms density history obtained using the the staggered method

with [23] is shown in Fig. 18. The 643 LES result (solid line) at conditions corresponding to case D8 of

Samtaney et al. [23] shows good agreement with their DNS (symbols from Fig. 5 in [23] are unfiltered

values). A slight underprediction of rms density by the LES, as evident in Fig. 18, is to be expected as the

DNS results are unfiltered and therefore contain scales that the LES does not resolve. Another comparison,



Fig. 16. Comparison of staggered method with method II – time history of turbulent Prandtl number.

Fig. 17. Comparison of staggered method with method II – conservation of total energy in the domain. The lines corresponding to the

staggered method are indistinguishable.
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this of the probability density function of Mach number, is made in Fig. 19 between case D9 of Samtaney

et al. (see Fig. 18 in [23]) and a 643 LES conducted at the same conditions (Mt ¼ 0:488, k0 ¼ 4, and Rek ¼ 175).

The Mach number PDF calculated at t=s ¼ 1:95 (¼ 1.56 based on the definition of s used in [23]) agrees



Fig. 18. Comparison of normalized density fluctuation evolution predicted by staggered LES with DNS of Samtaney et al. [23]. DNS

results are unfiltered and time axis has been renormalized to match the definition of s used herein.

Fig. 19. Comparison of probability density function of Mach number from staggered LES (at t=s ¼ 1:95) with DNS of Samtaney et al.

[23] (t=s ¼ 1:56 based on their units). DNS result is unfiltered.
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well with DNS results except for low probability events at high Mach numbers where the PDF obtained

herein shows statistical fluctuations due to the smaller number grid points available. Clearly, Mach number

becomes locally supersonic, indicating the presence of eddy-shocklets as observed in [23] for this case.
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7. Boundary schemes

Most problems of physical interest involve domains with non-periodic boundaries. To handle these,

boundary schemes need to be introduced for differentiation and interpolation at the boundary and near

boundary nodes. These schemes, by necessity, involve one sided differencing. Two properties need to be

considered while developing these schemes: (1) order of accuracy should be as high as possible and (2) a

discrete form of global conservation should be maintained. Boundary schemes satisfying these requirements

have been derived for the staggered method and are presented in this section.
Consider the 1-D grid shown in Fig. 20 which shows the nodes and the numbering scheme at the left

boundary. Clearly, two sets of boundary schemes are required, one for the q nodes and another for the qu
nodes.

7.1. Boundary schemes for the first derivative

A scheme for the first derivative at the boundary qu-node (j ¼ 0) may be written as

f 0
0 þ âaf 0

1 ¼
1

Dx
af1=2
�

þ bf3=2 þ cf5=2 þ df7=2
�
: ð32Þ

Third-order accuracy requires that the following relationships be satisfied:

a ¼ � 1
24
ð23âaþ 71Þ;

b ¼ 1
8
ð7âaþ 47Þ;

c ¼ 1
8
ðâa� 31Þ;

d ¼ 1
24
ð�âaþ 23Þ;

ð33Þ

where âa is a free parameter and can be chosen to satisfy some constraint. For simplicity, we choose âa ¼ 0.

The interior scheme is not applicable at the qu-node j ¼ 1. Instead, the most compact fourth-order

scheme obtained by setting âa ¼ 1=22 (which gives b ¼ 0) in (13) is used. The scheme at j ¼ 2 is also fourth-

order accurate (given by (13)) and is obtained from a discrete conservation condition as described in

Appendix B.

The first derivative at the boundary q-node (j ¼ 1=2) may be obtained using a relation of the form

f 0
1=2 þ âaf 0

3=2 ¼
1

Dx
ðaf0 þ bf1 þ cf2 þ df3Þ: ð34Þ

Once again, a one-parameter family of third-order schemes is obtained with

a ¼ 1
24
ðâa� 23Þ;

b ¼ 1
8
ð�9âaþ 7Þ;

c ¼ 1
8
ð9âaþ 1Þ;

d ¼ � 1
24
ðâaþ 1Þ:

ð35Þ

Discrete conservation requires that the point adjacent to the boundary (j ¼ 3=2) use a scheme different

from the interior scheme. The conservation condition and the boundary scheme that it yields are presented

in Appendix B.
Fig. 20. Variable arrangement at left boundary in one dimension.
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7.2. Boundary schemes for interpolation

A scheme for interpolating a function to the boundary qu-node (j ¼ 0) is

f I
0 þ âaf I

1 ¼ af1=2 þ bf3=2 þ cf5=2: ð36Þ

Comparing coefficients of the Taylor expansion gives a third-order scheme with

a ¼ 1
8
ð3âaþ 15Þ;

b ¼ 1
4
ð3âa� 5Þ;

c ¼ 1
8
ð3� âaÞ;

ð37Þ

where âa is chosen so that the coefficients a, b, and c are positive. This ensures that the interpolation process

does not create any new extrema in the domain. However, such schemes were found to be unstable when

integrated over long times. The scheme with âa ¼ 0 is stable and is used in the test cases presented herein.

For the qu-node j ¼ 1, the most compact fourth-order interpolation scheme is used. This scheme is ob-

tained by setting b ¼ 0 and âa ¼ 1=6 in (19).

The interpolation scheme for the boundary q-node ( j ¼ 1=2) is written as

f I
1=2 þ âaf I

3=2 ¼ af0 þ bf1 þ cf2 þ df3: ð38Þ

This yields a fourth-order scheme with

a ¼ 1
16
ð5� âaÞ;

b ¼ 1
16
ð9âaþ 15Þ;

c ¼ 1
16
ð9âa� 5Þ;

d ¼ 1
16
ð1� âaÞ;

ð39Þ

where âa ¼ 0 is chosen for simplicity. The interpolation scheme for the q-node j ¼ 3=2 is chosen to be a

fourth-order scheme given by (19). A value of âa ¼ 0:25 is used.

This is the complete set of boundary schemes required to extend the staggered method to non-periodic
domains. In the following section, we test the performance of these schemes.
8. Evaluation of boundary schemes

Boundary schemes from the previous section are now applied to problems with inflow and outflow

boundaries where non-reflecting boundary conditions based on the linearized Euler equations, as presented

in [24], are used in their 1-D unsteady form. For details of implementation on the staggered mesh, see [25].
The boundary treatment has to satisfy the following requirements to be suitable for compressible flows: (a)

reflection at the boundaries must be small and (b) should allow us to impose an incoming/outgoing tur-

bulent stream. Model problems that test these characteristics are presented in this section.

First, we consider the reflection of a 1-D acoustic wave (generated by an initially Gaussian pressure

distribution). Fig. 21 shows the time history of the L2 norm (i.e., the root mean square) of the pressure

fluctuation (from the uniform mean state). Four cases, with varying resolution (4, 8, 16, and 32 grid points

across the initial pulse with fixed time step) are presented. The feature of interest is the sharp downward

shift in the norm when the acoustic wave exits the boundary. The reflection coefficient, defined as the ratio
of the norms after and before the wave exits the domain, varies from 1% to 0.1% when the pulse is well

resolved. For ill-resolved pulses (4 and 8 points across the pulse), reflection is larger (�10%). It should be



Fig. 21. Boundary scheme test – reflection of 1-D acoustic wave from inflow and outflow boundaries.
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noted that after the first reflection, the waves that remain in the domain are ill-resolved, and subsequent
reflection coefficients are therefore higher.

The second problem is that of reflection at the boundary of an acoustic wave generated by an initially

Gaussian pressure distribution (in 2-D with 16 grid points across the pulse) of 5% amplitude is studied. The

grid size used is 64� 128. This generates a cylindrical pressure wave that interacts with the inflow/outflow

boundary conditions in the x-direction (as shown in the contours of pressure fluctuations in Fig. 22).

The domain in the x2-direction is much larger than shown in the figure, so the reflections are from the

x1-boundaries alone. From Fig. 22, it is clear that reflection is very small (around 3% in terms of the

maximum value of pressure fluctuations).
Fig. 22. Boundary scheme test – reflection of cylindrical wave from inflow and outflow boundaries.
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Lastly, we assess the ability of our boundary treatment to pass large vortical structures. Tests with

isolated vortices entering and leaving the domain have been carried out but the results are not presented

here. Instead, we present the more complicated case of isotropic turbulence carried by a uniform mean

stream of Mach number 0.25. At the inflow, the turbulent Mach number is 0.05, the Taylor microscale

Reynolds number is about 500 and the velocity spectrum is given by (31). This simulation evaluates the

ability to impose inflow turbulence as well as pass large vortical structures out of the domain. The decay of

turbulent kinetic energy from the inflow to the outflow planes is compared to a temporal simulation in

Fig. 23, where the spatial direction x1 has been converted to a time variable using Taylor�s hypothesis (i.e.,
t ¼ x=U1). There is some discrepancy at t ¼ 0 which corresponds to the inflow plane. The lack of precise

initial correspondence persists as a small difference between the two curves. Fig. 24 shows contours of

instantaneous spanwise vorticity in a spanwise plane. The scales observed in the figure are to be expected as

the initial field (at the inflow plane) develops smaller scales which are then dissipated by viscosity through

the viscous and sub-grid terms.

The boundary schemes presented herein work well with characteristic boundary conditions developed by

Giles [24]. Acoustic reflection at the boundaries is low, vortical structures exit the domain without sig-

nificant reflection, and turbulence can be specified at the inflow plane.
Fig. 23. Boundary scheme test – decay of turbulent kinetic energy predicted by simulation of spatially developing turbulence with

inflow and outflow boundaries compared to a temporal simulation at same conditions.

Fig. 24. Boundary scheme test – vorticity contours showing vortical structures entering and leaving the domain in a spatial simulation

of decaying isotropic turbulence.
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9. Conclusions

We have presented a new methodology for accurate large eddy simulation of compressible turbulent

flows. The robustness of compact high-order schemes for LES has been improved by a staggered ar-

rangement of variables. Staggering of the variables provides robustness at high Reynolds numbers while

maintaining conservation and is therefore better suited for flows involving shocks. Robustness of the

method has been illustrated through the test problem of decaying compressible isotropic turbulence. The

staggered method provides significant improvement over collocated method I that uses the conservative
form of the equations. Collocated method II also improves on collocated method I but suffers in terms of

energy conservation. Staggering avoids this pitfall. Boundary schemes are also presented that allow ap-

plication of this methodology to more general flows.
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Appendix A. Sub-grid model

In this section, the sub-grid terms in (9) are derived.Modeling terms in the momentum equation arise from

filtering of non-linear (advective and diffusive) terms. The sub-grid contribution of the advection term is

ssgsij ¼ q guiujuiuj
�

� euuieuuj

�
ðA:1Þ

and needs to be modeled. The non-linearity in the viscous stress tensor rij as defined in (3) leads to a sub-

grid contribution

rij ¼
lðeTT Þ
Re

2Sij �
2

3
dijSkk

� �
ðA:2Þ

¼ lðeTT Þ
Re

2eSSij

�
� 2

3
dijeSSkk

�
þ rsgs

ij ; ðA:3Þ

where

Sij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
; ðA:4Þ
rsgs
ij ¼ lðeTT Þ

Re
2Sij �

2

3
dijSkk

� �
� lðeTT Þ

Re
2eSSij

�
� 2

3
dijeSSkk

�
: ðA:5Þ

The sub-grid term rsgs
ij is neglected [26].

Before the sub-grid terms in the energy equation are modeled, it needs to be noted that thermodynamic

variables (pressure and temperature) are evaluated from conserved variables. Since these are related non-

linearly, sub-grid terms arise. Specifically, pressure is related to the conserved variables by

p
c� 1

¼ E � 1

2
qukuk: ðA:6Þ
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Filtering this equation, we get

p
c� 1

¼ E � 1

2
qeuukeuuk �

1

2
q gukukukuk � euukeuukð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2
ssgskk

: ðA:7Þ

The term ssgskk appears in the momentum equation and is modeled in that context. It needs to be included in
the definition for pressure as well.

The non-linear advection terms in the energy equation lead to a sub-grid term (qk in (9)). This term is

obtained as follows:

ðE þ pÞuj ¼
c

c� 1
puj þ

1

2
qukukuj ¼ qfTujTuj þ 1

2
q

¼ qeTT euuj þ qðfTujTuj � eTT euujÞ þ
1

2
qeuukeuukeuuj þ

1

2
q
�

� euukeuukeuuj

�
: ðA:8Þ

Using (A.7), this reduces to

ðE þ pÞuj ¼ E
�

þ p
�euuj þ qðfTujTuj � eTT euujÞ þ

1

2
q
�

� gukukukukeuuj

�
: ðA:9Þ

Neglecting the last term on the right, we get a sub-grid heat flux (qsgsj in (9)) that has the form

qsgsj ¼ qðfTujTuj � eTT euujÞ: ðA:10Þ

Modeling terms arising from the non-linearities in the heat flux term qj and the work term ujrjk in the

energy equation are neglected [26].

The sub-grid terms of (A.1) and (A.10) are modeled using the dynamic procedure of [13] with the

modifications proposed by Lilly [27]. These are evaluated as follows:

ssgsij � 1

3
ssgskk dij ¼ �2CqD2jeSS j eSSij

�
� 1

3
eSSkkdij

�
; ðA:11Þ
ssgskk ¼ 2CIqD
2jeSS j2; ðA:12Þ
qsgsi ¼ � qCD2jeSS j
Prt

oeTT
oxi

; ðA:13Þ

where C, CI , and Prt are the sub-grid model coefficients that are evaluated using the dynamic procedure as

C ¼
Lij � 1

3
Lkkdij

� �
Mij

	 

MpqMpq

	 
 ; ðA:14Þ
CI ¼
Lkkh i

2q̂qD̂D2jêSSeSS j2D E ; ðA:15Þ

Prt ¼ �C
NiNih i
KjNj

	 
 ; ðA:16Þ
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where

ðA:17Þ

ðA:18Þ

ðA:19Þ

ðA:20Þ

In these equations, the angular brackets h�i denote averaging along homogeneous directions (volume av-

erage in case of homogeneous isotropic turbulence) and the hat �̂� represents a test filter which is chosen to be

the explicit seven point least-squares filter defined in [18] as

f̂fj ¼ 0:5fj þ 0:6744132
fj�1 þ fjþ1

2
� 0:1744132

fj�3 þ fjþ3

2
ðA:21Þ
and is applied successively in all three directions.

In the staggered method, all sub-grid model coefficients are calculated at the q-node by evaluating Lij,

Mij, Ni, and Ki at this node. The model coefficients are then interpolated to the nodes (corresponding to

viscous stresses sij and heat flux qi) where they are needed for evaluation of the sub-grid stress tensor ssgsij

and heat flux vector qsgsi , respectively.
Appendix B. Discrete conservation

Boundary schemes are selected to satisfy a discrete form of global conservation which ensures conser-

vation for linear equations with constant coefficients. This does not translate into discrete conservation for

non-linear equations involving the interpolation operation.

The staggered compact scheme may be written in matrix form as

Af 0 ¼ 1

Dx
Bf; ðB:1Þ

where A is an N � N tridiagonal matrix, B is an N � N matrix with four diagonals, f is an N -vector con-

sisting of the function values at the nodes, and f 0 is the N -vector of derivatives located Dx=2 away from f. To

satisfy the global conservation constraint, it is required that all the columns of the matrix B, except the first

and last ones, add up to zero (see [8]). This ensures that only the boundary fluxes contribute to the change

inside the domain and thus enforces global conservation.
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The discrete conservation condition needs to be applied to both sets of boundary schemes described

earlier. Evaluation of derivatives at the qu-nodes (see Fig. 20) lead to a B matrix as shown below

B ¼

w0a0 w0b0 w0c0 w0d0 0 � � �
�w1a1 w1a1 0 0 0 � � �

�w2b2=3 �w2a2 w2a2 w2b2=3 0 � � �
0 �b=3 �a a b=3 � � �
0 0 �b=3 �a a � � �
0 0 0 �b=3 �a � � �
0 0 0 0 �b=3 � � �
..
. ..

. ..
. ..

. ..
. . .

.

266666666666664

377777777777775
; ðB:2Þ

where the coefficients fa0; b0; c0; d0g in the first row correspond to the boundary scheme given by (32) and

are evaluated by choosing a value for âa in (32) (âa ¼ 0 is selected in this case). The coefficient a1 in the second

row corresponds to the most compact fourth-order scheme obtained by setting âa ¼ 1=22 in (13) and the

coefficients a2; b2 in the third row correspond to a fourth-order scheme (to be chosen to satisfy conserva-

tion) given by (13). The weights w0;w1;w2 are also to be chosen so as to satisfy global conservation. The

coefficients a; b correspond to the interior difference scheme obtained by setting âa ¼ 9=62 in (13). The

conservation condition requires that all columns except the first and last ones sum to zero

w0b0 þ w1a1 � w2a2 ¼
b
3
;

w0c0 þ w2a2 ¼ aþ b
3
;

w0d0 þ
1

3
w2b2 ¼

b
3
:

ðB:3Þ

These are three equation in four unknowns w0, w1, w2, and âa (corresponding to a2 and b2). Therefore we

have one free parameter, which we choose as w2 without loss of generality. It has been observed that certain

values of w2 lead to boundary schemes that are unstable. The value w2 ¼ 1:1 is found to be stable and is

used. The value of âa obtained with w2 ¼ 1:1 is used to provide the difference scheme for the point j ¼ 2.

This set now satisfies the global conservation condition.

A similar analysis is required for evaluation of derivatives at the q-nodes (Fig. 20). The right-hand side

matrix B is

B ¼

w0a0 w0b0 w0c0 w0d0 0 � � �
�w1b1=3 �w1a1 w1a1 w1b1=3 0 � � �

0 �b=3 �a a b=3 � � �
0 0 �b=3 �a a � � �
0 0 0 �b=3 �a � � �
0 0 0 0 �b=3 � � �
..
. ..

. ..
. ..

. ..
. . .

.

26666666664

37777777775
; ðB:4Þ

where the coefficients fa0; b0; c0; d0g in the first row correspond to the boundary scheme given by (34). âa ¼ 0

is chosen for this case. The coefficients fa1; b1g in the second row correspond to a fourth-order scheme

which is to be chosen so that the conservation condition is satisfied. Once again, w0 and w1 are weights that
need to be obtained using the conservation condition. The conservation requirement yields
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w0b0 � w1a1 ¼
b
3
;

w0c0 þ w1a1 ¼ aþ b
3
; ðB:5Þ

w0d0 þ
1

3
w1b1 ¼

b
3
:

These are three equations in three unknowns (a1 and b1 are uniquely determined by the parameter âa
through Eqs. (14) and (15)) and can be solved to give

w0 ¼
223

186
; w2 ¼

61

62
; âa ¼ 37

183
: ðB:6Þ
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